
-Al~i 711 INTEGRATED INFORMATION SUPPORT SYSTEM (CSS)
VOLUME 5 /l

le COMMON DATR MODEL S (U) GENERAL ELECTRIC CO
SCHENECTADY NY PRODUCTION RESOURCES CONSU M LOOMIS

UNCLASSIFIED 81 NOV 85 DS-62814 320 F/G 12/5 NL

El'

1 11.0 L44 2

. IL22
L L

Igo

IL251 1.1 146

0T1 i t wey

AFWAL-TR-86-4006
Volume V
Part 28

AD-A181 711

INTEGRATED INFORMATION
SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 28 - Data Aggregators Development Specification

General Electric Company
Production Resources Consulting
One River Road
Schenectady. New York 12345

Final Report for Period 22 September 1980 - 31 July 1985

November 1985

Approved for public release; distribution is unlimited.

DTIC
OELECTE~i

MATERIALS LABORATORY C UNLECTED
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AFB, OH 45433-6533 A

i" lf LAW 11011, .

NOTICE

When Government drawings specifications, or other data are used for any purpose other than
in connection with a definitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the
government may have formulated furnished, or in any way supplied the said drawings
specifications or other data, is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use. or sell any patented invention that may in any way be related
thereto

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the
National Technical Information Service (NTIS) At NTIS. it will be available to the general
public including foreign nations

This technical repo has been reviewed and is approved for publication.

DA ID LIJUD ON' PROJECT MANAGER DA TEW IjA WA L/L~mTf

WIGHT PACERSON AFB OH 45433

FOR THE COMMANDER.

"RADCSHUMAKER, BRANCH CHIEF DATE -

AFWAL/MLTC
WRIGHT PATTERSON AFB OH 45433

"If your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization please notify AFWAL/MLTC, W.PAFB, OH
45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security cnniedorptinm,

contractual obligations, or notice on a specific document

j'4 11%

REPORT DOCUMENTATiON PAGE
16 090001 5ACwft'w1 C#A~P1A10 16 0emsra-vi M kh

Unclass ified

I& s 51T'V C.&a.4CAy,@D% aUi0?mQ11TY 3 D'ISiJ I80oft £V6^*3i.ITY of Rapon

70 0 CA11i I~~CA? 4% /*mt OkA DING &CO D6 Approved f or public release:
distribution is unl imited.

d.PMFOhi~C SG~4*SO 1 RPORT NhDM0,940I 60fI095t MO.7U 41GaANa8AI~ R90DAY ftUM66161

AFWAL-TR-86-4006 Vol V. Part 28

A& AsAMI O PgSkDPOIG~ GOAti.ZAtmfW a. Office SO0 7&. ftAM5 Of WO..lQftG QKC.ANSIAO

General Itectric Company EMDbiAYVAL/NLTC
Production Resources Consultiag ________ ______________________

6LAD. g £051 Clow. SIme LIP Coe bLOXSS iCft. So esi ot

2 Rtiver Rkoad VAB H44363
Schenect~ady. WT 123345 WAB N44363

as %&AE Of f I9asp.ts OUSO l OOPPIC G"MSO&. 8 PROCURIEj~~IM5 I6'4IIC70 NVUM5A
*ArataalAT66fe I" Wfmffbi"

ail Laboratory *131-OC55
Air Force Systems Comnman5d. USAF J VLMT 36I-0C55

AL&Dome"6 afee. Sao md SIP CO 10 SOOCI Of eVso's@ Not

PROOS1AM A pe~CT VMS WORK Wft
Wrlght-Patters= An3. ftle 4M433 afSw T o o 410 No.

afef Sve, t cime.,. s" 7500arvso 62 01

(See Reverse) ______

Loomis. Nary

13& Yv-04P0 a poAY 1a, ?#ON COv#01O 16 Days of aEp05? Wo.m. Shop is PAr# COV047
Friaal YeeslealS *~e3j a2 sopt 5300 - &I July see1 1965 Novismber 29
5 5offuueft7&A 866TASON The computer Software contained berein are ibeoretloal and/or

JCM project Priority 020 uefOVeaces that 12 S0 Way Pef I Oct &I r Torc*-owne4, orq 4eve Ioped

S £~h ini I co-mputern sotare.

The Common Data Moide Processor (CDNP) Is a mechanism by which application
programs can retrieve and update data without knowing where or how the data
are stored. An appliacation program poses requests to the CDHP, which
processes those requests against the databases in which the relevant data
are stored ad then returns the results to the application program. The
Neutral Data Manipulation Language (MDNL) is the means for posing requests
to the CUEP- Some MDEIL requests Involve data that are stored in more than
One database. 00r, component of the CDKP. Call the Aggregator. combine& the
data " om each of these databases into a complete result for such a rmeet.
This development specification describes the functions. performance.
environment. Interfaces, and design requirements of the Aggregator.

so 045T ?It'is vaest.& S asAC aS3?Af&Nrt 1 $TACT ICulvy c~amagpecAoa@#

&&Me as Mo .VI mums Unclassified

awl OfM 46OW4 WISaI~igs6wai. a"2 TIL3*44UR wwUemI 32C *ppleIseYMeol

David L. edsem _______Awe CadI WAZ./MTC

1.Title

Integrated Information Support System (IISS)
Vol V - Common Data Model Subsystem
Part 28 - Data Aggregators Development Specification

A S D 86 1440
17 Jul 1986

A.47

DS 620141320

1 November 1985

PREFACE

This development specification covers the work performed
under Air Force Contract F33615-80-C-5155 (ICAM Project 6201).
This.contract is sponsored by the Materials Laboratory, Air
Force Systems Command, Wright-Patterson Air Force Base, Ohio.
It was administered under the technical direction of Mr. Gerald
C. Shumaker, ICAM Program Manager, Manufacturing Technology
Division, through Project Manager, Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company, Schenectady, New York, under the direction of
Mr. Alan Rubenstein. The General Electric Project Manager was
Mr. Myron Hurlbut of Industrial Automation Systems Department,
Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on thp
Report Documentation Page (DD1473). A listing and descripti4.
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewer
Company (BMAC)

D. Appleton Company Responsible for IDEF support,
(DACOM) state-of-the-art literature

search

General Dynamics/ Responsible for factory view
Ft. Worth function and information

models

iii

DS 620141320
1 November 1985

Subcontractors Role

Illinois Institute of Responsible for factory view
Technology function research (IITRI)

and information models of
small and medium-size business

North American Rockwell Reviewer

Northrop Corporation Responsible for factory view
function and information
models

Pritsker and Associates Responsible for IDEF2 support

SofTech Responsible for IDEFO support

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors Role

Boeing Military Aircraft Responsible for consultation on
Company (BMAC) applications of the technology

and on IBM computer technology.

Computer Technology Assisted in the areas of
Associates (CTA) communications systems, system

design and integration
methodology, and design of the
Network Transaction Manager.

Control Data Corporation Responsible for the Common Data
(CDC) Model (CDM) implementation and

part of the CDM design (shared
with DACOM).

D. Appleton Company Responsible for the overall CDM
(DACOM) Subystem design integration and

test plan. as well as part of
the design of the CDM (shared
with CDC). DACOM also
developed the Integration
Methodology and did the schema
mappings for the Application
Subsystems.

iv

DS 620141320
1 November 1985

Subcontractors Role

Digital Equipment Consulting and support of the
Corporation (DEC) performance testing and on DEC

software and computer systems
operation.

McDonnell Douglas Responsible for the support and
Automation Company enhancements to the Network
(McAuto) Transaction Manager Subsystem

during 1984/1985 period.

On-Line Software Responsible for programming the
International (OSI) Communications Subsystem on the

IBM and for consulting on the
IBM.

Rath and Strong Systems Responsible for assistance in
Products (RSSP) (In 1985 the implementation and use of
became McCormack & Dodge) the MRP II package (PIOS) that

they supplied.

SofTech, Inc. Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Software Performance Responsible for directing the
Engineering (SPE) work on performance evaluation

and analysis.

Structural Dynamics Responsible for the User
Research Corporation Interface and Virtual Terminal
(SDRC) Interface Subsystems.

Other prime contractors under other projects who have
contributed to Test Bed Technology, their contributing
activities and responsible projects are as follows:

Contractors ICAM Project Contributing Activities

Boeing Military 1701, 2201, Enhancements for IBM
Aircraft Company 2202 node use. Technology
(BMAC) Transfer to Integrated

Sheet Metal Center
(ISMC)

v

DS 620141320

1 November 1985

Contractors ICAM Project Contributing Activities

Control Data 1502, 1701 IISS enhancements to
Corporation (CDC) Common Data Model

Processor (CDMP)

D. Appleton Company 1502 IISS enhancements to
(DACOM) Integration Methodology

General Electric 1502 Operation of the Test
Bed and communications
equipment.

Hughes Aircraft 1701 Test Bed enhancements
Company (HAC)

Structural Dynamics 1502, 1701, IISS enhancements to
Research Corporation 1703 User Interface/Virtual
(SDRC) Terminal Interface

(UI/VTI)

Systran 1502 Test Bed enhancements.
Operation of Test Bed.

vi

DS 620141320
1 November 1985

TABLE OF CONTENTS

SECTION 1.0 SCOPE 1-1
1.1 Identification 1-1
1.2 Functional Summary 1-4

SECTION 2.0 DOCUMENTS 2-1
2.1 Applicable Documents 2-1
2.2 Terms and Abbreviations 2-2

SECTION 3.0 REQUIREMENTS 3-1
3.1 Computer Program Definition 3-1
3.1.1 System Capacities 3-1
3.1.2 Interface Requirements 3-1
3.2 Detailed Functional Requirements 3-1
3.2.1 Function AGGI: Prepare Operands ... 3-1
3.2.2 Function AGG2: Perform Union 3-4
3.2.3 Function AGG3: Perform Join 3-5
3.2.4 Function AGG4: Report Results 3-6
3.2.5 Function AGG5: Perform NOT-IN-SET

Selection 3-7
3.3 Special Requirements 3-8
3.4 Human Performance 3-8
3.5 Database Requirements 3-8
3.6 Adaptation Requirements 3-8

SECTION 4.0 QUALITY ASSURANCE PROVISIONS 4-1

SECTION 5.0 PREPARATION FOR DELIVERY 5-1

LIST OF ILLUSTRATIONS

Figure Title Page

1-1 AO of the CDMP Configuration Items 1-2

vii

DS 620141320
1 November 1985

SECTION I

SCOPE

1.1 Identification

This specification establishes the performance, develop-
ment, test and qualification requirements of a collection of
computer programs identified as Configuration Item (CI)
"Aggregator."

This CI constitutes one of the major subsystems of the
"Common Data Model Processor" (CDMP) which is described in the
System Design Specification (SDS) for the ICAM Integrated
Support System (IISS). The CDMP scope is based on a logical
concept of subsystem modules that interface with other external
systems of the IISS. The CDMP has been decomposed into three
configuration items: the Precompiler, the Distributed Request
Supervisor (DRS), and the Aggregator. The scope of the CDMP and
its configuration items is described in Figure 1-1 and the
following narrative.

Common Data Model Processor (CDMP)

Input to the CDMP consists of user transactions in the form
of neutral data manipulation language (NDML) commands embedded
in COBOL or FORTRAN host programs. NDML commands phrased as
stand-alone requests may be supported in future enhancements.

The Precompiler CI parses the application program source
code, identifying NDML commands. It applies external-schema-
to-conceptual-schema and conceptual-schema-to-internal-schema
transforms on the NDML command, thereby decomposing the NDML
command into internal schema single database requests. These
single database requests are each transformed into generic DML
commands. Programs are generated from the generic DML commands
which can access the specific databases to retrieve the data
required to evaluate the NDML command. These programs, referred
to as Request Processors (RP), are stored at the appropriate
host machines. The NDML commands in the application source
program are replaced by function calls which when executed, will
activate the run-time request evaluation processes associated
with the particular NDML command.

1-1

DS 620141320
1 November 1985

w AW I

oz cc
w wu

n 2--LI

Us LU

0
z.

U.0 0
<C.,

%..
on 0

0. 0

u >< U,

M 4A

U. Z z
U, w auw
A.~~~a 1-: -- t

IL C<

1-2

DS 620141320
1 November 1985

The Precompiler also generates a CS/ES Transformer program
which will take the final results of the request, stored in a
file as a table with external schema structure and convert the
data values into their external schema form.

Finally, the Precompiler generates a Join Request Graph and
* Result Field Table, which are used by the Distributed Request

Supervisor (DRS) during the run-time evaluation of the request.

The DRS CI is responsible for coordination of the run-time
activity associated with the evaluation of an NDML command. It
is activated by the application program, which sends it the
names and locations of the RPs to activate, along with run-time
parameters which are to be sent to the RPs. The DRS activates
the RPs, sending them the run-time parameters. The results of
the RPs are stored as files, in the form of conceptual schema
relations, on the host which executed the RP. Using the Join
Request transmission cost information, and data about
intermediate results, the DRS determines the optimal strategy
for combining the intermediate results of the NDML command. It
issues the appropriate file transfer requests, activates
aggregators to perform join, union, and not-in-set operations,
and activates the appropriate CS/ES Transformer program to
transform the final results. Finally, the DRS notifies the
application program that the request is completed, and sends it
the name of the file which contains the results of the request.

The Aggregator CI is activated by the DRS. An instance of
the Aggregator is executed for each join, union, or not-in-set
performed. It is passed information describing the operation
to be performed and the file names containing the operands of
the operation. The DRS ensures that these files already exist
on the host which is executing the particular Aggregator pro-
gram. The Aggregator performs the requested operation,
storing the results in a file whose name was specified by the
DRS and is located on the host executing the Aggregator.

The CDMP provides the application programmer with important
capabilities to:

1. Request database accesses in a non-procedural data
manipulation language (the NDML) that is independent
of the data manipulation language (DML) of any
particular Data Base Management System (DBMS),

2. Request database access using a DML that specifies
accesses to a set of related records rather than to

1-3

U6

DS 620141320
1 November 1985

individual records, i.e., using a relational DML,

3. Request access to data that are distributed across
multiple databases with a single DXL command, without
knowledge of data locations or distribution details.

Information about external schemas, the conceptual schema,
and internal schemas (including data locations) are provided by
CDMP access to the Common Data Model (CDM) database. The CDN is
a relational database of metadata pertaining to IISS. It is
described by the CDM1 information model using IDEF1.

1.2 Functional Summary

The overall objective of this CI is to perform relation
join, union, and not-in-set operations upon intermediate re-
suits of a multi-database transaction. It, along with the DRS,
Request Processors, and local DBMS modules, performs the run-
time evaluation of commands presented to them by application
processes.

There are two Aggregator programs residing on each site
containing a database, including the site containing the CDXP.
They are identical except that one is invokable via an NTM
message while the other is callable as a subroutine. The DRS
determines which to use for each aggregation. This development
specification describes the generic Aggregator CI, which is to
be implemented as multiple Aggregator programs. The DRS causes
an Aggregator program to be executed for each join, union, or
not-in-set operation which is required to evaluate a particular
NDML request. It is the DRS's responsibility to ensure that
both operands to the operation already reside in files on the
site where the operation is to be performed. When an Aggregator
is activated, it is passed parameters which it needs to perform
the operation. Included in these parameters are the file names
of the operands and the file name where the result of the
operation is to be stored. A logical channel ID is also a part
of the activation message. This is a communications channel
created between the Aggregator and the DRS. The reply message
is sent by the Aggregator over this channel when the operation
is completed.

The Aggregator sorts the files containing the operands
appropriately, creates the file which will contain the resultant
table, reads the operand files, performs the join, union, or
not-in-set operation and stores the results in the resultant
relation file. Finally, it deletes the operand files, sends a

1-4

DS 620141320
1 November 1985

completion message to the DRS which created it, and terminates.

Major functions to be described in this document for this
CI are:

* Function AGGI Prepare Operands
* Function AGG2 Perform Union
" Function AGG3 Perform Join
* Function AGG4 Repo-t Results
* Function AGG5 Perform Not-In-Set Selection

,

-- 1-5

.4[

DS 620141320
1 November 1985

SECTION 2

DOCUMENTS

2.1 Applicable Documents

Following is a list of applicable documents relating to
this Computer Program Development Specification for the system
identified as the Common Data Model Processor (CDMP) Aggregator.

Related ICAM Documents included:

UM620141001 CDM Administrator's Manual

TBM620141000 CDM1, An IDEFi Model of the Common
Data Model

UM620141100 Neutral Data Definition Language
(NDDL) User's Guide

PRM620141200 Embedded NDML Programmer's Reference
Manual

UM620141002 ICAM Definition Method for Data
Modeling (IDEFl-Extended

DS620141200 Development Specification for the IISS
NDML Precompiler Configuration Item

DS620141310 Development Specification for the IISS
Distributed Request Supervisor
Configuration Item

Other references include:

Bernstein, P. A. et. al., "Request Processing in a System
for Distributed Databases (SDD-I)," ACM Transactions on
Database Systems, Vol 6, No 4, December 1981.

Blasgen, M. W., Esvaran, K. P., "On the Evaluation of
Quebles in A Relational Data Base System," IBM
Research Report RJ1745, IBM Research Laboratory,
San Jose, CA, April 1976.

Chamberlin, D. D., "Relational Data Base Management

2-1

'1 ...

DS 620141320
1 November 1985

Systems," Computing Surveys, Vol 8, No 1, March 1976.

Daniels, D., et. al., "An Introduction to Distributed
Request Compilation in R*," IBM Research Report RJ3497,
IBM Research Laboratory, San Jose, CA, June 1982.

Dejean, J.P., Test Bed System Development
Specifications, General Electric Co., November 9, 1982.

Epstein, R., Stonebraker, M., and Wong, E., "Distributed
Request Processing in a Relational Database System," Pro-
ceedings of the ACM SIGMOD International Conference,
Austin, TX, June, 1978.

Lindsay, B. G., et. al., "Notes on Distributed Databases,"
IBM Research Report RJ2571, IBM Research Laboratory, San
Jose, CA, July 14, 1979.

Williams, R., et. al., "R*: An Overview of the
Architecture," IBM Research Report RJ3325, IBM Research
Laboratory, San Jose, CA, December 12, 1981.

2.2 Terms and Abbreviations

The following acronyms are used in this document:

APL Attribute Pair List

AUC Attribute Use Class

CDMP Common Data Model Processor

CI Configuration Item

CS Conceptual Schema

DML Data Manipulation Language

DRS Distributed Request Supervisor
(previously SS - Stager/Scheduler)

ES External Schema

ICAM Integrated Computer Aided Manufacturing

IS Internal Schema

2-2

DS 620141320
1 November 1985

NDML Neutral Data Manipulation Language

RP Request Processor

RFT Result Field Table

SDS System Design Specification

2-3

DS 620141320
1 November 1985

SECTION 3

REQUIREMENTS

3.1 Computer Program Definition

3.1.1 System Capacities

The capacity of the Aggregator is limited by the capacity
of the file systems where the operands and resultant relations
are stored and by the sorting capabilities of the computer. It
is the responsibility of each site's system administrator to
ensure that file system and memory allocation capacities are
adequate.

3.1.2 Interface Requirements

3.1.2.1 Interface Blocks

This CI is the mechanism that aggregates results of
logically related intermediate responses to a distributed data-
base request. Its interfaces include input in the form of two
types of requests and output in the form of a table (relation)
and status responses.

3.1.2.2 Detailed Interface Definition

The specific interface relationships of this CI to other
CIs and modules are described in detail for appropriate
functions in Section 3.2.

3.2 Detailed Functional Requirements

The following subsections document each of the Aggregator's

major functions identified in Section 1.2.

3.2.1 Function AGGI: Prepare Operands

This function sorts the operands, which are stored in
files, for the join, union, or not-in-set operation.

3.2.1.1 Inputs

The input to this function is the operation request, which
is part of the message body sent by the DRS when the Aggregator
is activated.

3-1

DS 620141320
1 November 1985

The format of a join request is the following:

JOIN rell rel2 result APL rell-rft rel2-rft result-rft

where:

rell - file name of the first operand.

rel2 M file name of the second operand.

result - file name where the result should be
stored

APL - pointer to attribute pair list (APL)
entry containing Information about
the join fields.

rell-rft W pointer to Result Field Table (RFT)
entry containing field format
information for rell.

rel2-rft M pointer to an RFT entry for rel2.

result-rft - pointer to an RFT entry for the result
table.

The format of a union request is the following:

UNION rell rel2 result rft

The rell, rel2. and result fields have the same meaning as
that of the join request. There is only one RFT pointer,
because the formats of both files and the result are identical.

The format of a NOT-IN-SET selection operation request is
as follows:

NOT rell rel2 result APL rell-rft rel2-rft

where:

rell, rel2, and result have the same meaning as in
the join request.

APL is similar to the APL for a join request but the

3-2

DS 620141320
1 November 1985

indicated fields are for the NOT-IN-SET selection.

rell-rft is the RFT for rell and for the result.

rel2-rft is the RFT for rel2.

The format of the APL is a list of join attribute pairs.

Each entry in the list contains the following:

rell attrl rel2 attr2 link

where:

rell - not used

attr - Attribute Use Class number (AUC) of an
attribute from rell

rel2 - not used

attr2 - AUC from rel2

link - not used

Each entry in the RFT has the following format:

rel attr type size ND PID is-ptr

where:

rel - not used

attr - AUC of the field

type - field type (alphabetic, numeric, etc.)

size - number of bytes in the field

ND - number of decimal places of the field

PID - not used

is-ptr - not used

3-3

DS 620141320
1 November 1985

3.2.1.2 Processing

This function sorts the operands appropriately. If the
request type is union, then each operand is sorted in ascending
sequence, starting with the leftmost field. If the request type
is join or not-in-set, then each operand is sorted in ascending
sequence, using its join field as the sort key.

It is assumed that the underlying operating system at each
site where an Aggregator program executes provides sufficient
sort facilities. Function AGG1 merely activates these
facilities. If a site operating system does not provide
sufficient sort facilities, then they will have to be developed,
as a separate configuration item.

3.2.1.3 Outputs

The outputs of this function are the input files, sorted
appropriately.

3.2.2 Function AGG2: Perform Union

This function performs a union operation on the input
operands, and stores the results in a specified file.

3.2.2.1 Inputs

Inputs to this function are:

* The file names of the operands, sorted appropriately.

0 The file name of the resultant relation

The operand files have been sorted by the AGGI function,
but the file names were left unchanged.

3.2.2.2 Processing

The algorithm used by this function is called a merge sort.
Each operand file is opened, and the file which is to contain
the resultant relation is created and opened. A record is read
from each operand file, and the lexicographically lover record
is chosen and written to the resultant relation file. Another
record is read from the operand file of the record just written,
and the process is repeated, until all records have been read.
Then all three files are closed.

3-4

W.mWm

DS 620141320
1 November 1985

3.2.2.3 Outputs

Thsre are two outputs of this function:

" The resultant relation file

* The number of records in the resultant relation file

3.2.3 Function AGG3: Perform Join

This function performs a join operation on the input
arguments and stores the results in a specified file.

3.2.3.1 Inputs

Inputs to this function are:

" The file names of the operands, sorted appropriately

" The attribute pair list

" The three RFT's

" The file name of the resultant relation

All inputs come from the activation message. The operand
files have been sorted by the AGG1 function, but the file names
were left unchanged.

3.2.3.2 Processing

Both operand files are opened, and the resultant relation
file is created and opened. For each record of the first
operand, the second operand file is scanned for records whose
values in its join fields match the values in the join fields of
the record of the first operand. A record is created for each
record of the second operand which meets the above conditions.
The created record contains all the fields specified in the
result RFT. Each created record is written to the resultant
relation file.

Because both operands are sorted by their respective join
fields, only one pass need be taken over each operand. How-
ever. all records of the second operand which participate in the
join with a particular record of the first operand must be
saved. This is necessary since the next record of the first
operand may contain the same values in its join fields as the

3-5

DS 620141320
1 November 1985

previous record, thus requiring the saved records. If these
join field values are not the same, then the required records
from operand two have not been read yet, and the previously
saved records can now be discarded. The resultant relation may
contain duplicate records.

3.2.3.3 Outputs

There are two outputs of this function:

" The resultant relation file

* The number of records in the resultant relation file

3.2.4 Function AGG4: Report Results

This function removes the operand files, sends an ENDUNION,
ENDJOIN or ENDNOT message to the DRS which initiated the action,
and terminates execution of the Aggregator process.

3.2.4.1 Inputs

Inputs to this function are:

0 file names of the operands

0 logical channel id of the DRS process

0 resultant file name

0 number of records in the resultant relation

The first three inputs come from the activation message.
The remaining input comes from either the AGG2, AGG3, or AGG5
functions.

3.2.4.2 Processing

This function makes calls to the operating system to remove
the files storing the operands. It then constructs an ENDUNION,
ENDJOIN, or ENDNOT message and sends it to the DRS processor
which invoked the Aggregator process using the logical channel
Id or a subroutine parameter as appropriate. Finally, it causes
the termination of the Aggregator process.

3-6

DS 620141320
1 November 1985

3.2.4.3 Outputs

The outputs of this module are the following:

1. Two file system calls to remove the operand files.

These calls are site dependent.

2. An ENDUNION. ENDJOIN. or ENDNOT message. The mes-
sage has the following format:

message length

where:

message - ENDJOIN, ENDUNION, OR ENDNOT

length - the number of records in the
resultant relation

3.2.5 Function AGG5: Perform NOT-IN-SET Selection

This function performs a not-in-set selection on the first
input file and stores the results in a specified file.

3.2.5.1 Inputs: Inputs to this function are:

0 the file names of the operands, sorted appropriately

* the attribute pair list

0 the RFTs of the operands

0 the file name of the resultant relation

All inputs come from the activation message. The operands
have been sorted by the AGGl function but the file names were
left unchanged.

3.2.5.2 Processing:

Both operand files are opened and the resultant relation
file is created and opened. For each record of the first
operand, the value of the selection field designated by the APL
is compared with values in the selection field in the second
operand; because both files are sorted by comparison fields, the
second file need be searched only from the first occurrence of
the value of a previous match to values greater than the value

3-7

DS 620141320
1 November 1985

sought. If no match is found, the record from the first file is
copied to the result file; if a match is found, the record is
not copied. The result record contains all the fields of the
first operand.

3.2.5.3 Outputs

There are two outputs from this function:

* the resultant relation file

0 the number of records in the resultant relation file

3.3 Special Requirements

Principles of structured design and programming will be
adhered to.

3.4 Human Performance

Not applicable.

3.5 Database Requirements

Not applicable.

3.6 Adaptation Requirements

The system will be implemented at the ICAM IISS Test Bed
site located at the General Electric facility in Schenectady,
NY. The Aggregator processes will be implemented on the VAX VMS
host and the IBM host.

3-8

DS 620141320

1 November 1985

'-C.. SECTION 4

QUALITY ASSURANCE PROVISION

In preparation for describing requirements for quality
assurance provisions, it is appropriate to define the terms
"test" and "debug" which are often used interchangeably.
"Testing" is a systematic process that may be preplanned and
explicitly scheduled. Test techniques and procedures may be
defined in advance and a sequence of test steps may be
specified. "Debugging" is the process of isolation and
correction of the cause of an error. To start with, the con-
cept of "antibugging" is recommended in the construction of the
software modules. In his text on software development
(Techniques of Program Structure and Design, Prentice-Hall
1975). Yourdon defines antibugging as "the philosophy of writing
programs in such a way as to make bugs less likely to occur, and
when they do occur (which is inevitable), to make them more
noticeable to the programmer and the user." That is, do as much
error checking as is practical and possible in each routine.

Among the tests that should be incorporated into all
software are:

1. input data checks

2. interface data checks, i.e., tests to determine
validity of data passed from calling routine

3. database verification

4. operator command checks

5. output data checks

Not all tests are required in all routines, but error
checking is an essential part of all software.

The CI quality assurance provisions must consist of three
levels of test, validation and qualification of the constructed
application software.

1. The initial level can consist of the normal testing

techniques that are accomplished during the con-
struction process. They consist of design and
code walk-throughs, unit testing, and integration

4-1

DS 620141320
1 November 1985

testing. These tests will be performed by the design
team which will be organized in a manner similar to
that discussed by Weinberg in his text on software
development team organization (The Psychology of
Computer Programming New York: Van Nostrand
Reinhold. 1971). Essentially a team is assigned to
work on a subsystem or CI. This approach has been
referred to as "adaptive teams" and "egoless teams."
Members of the team are involved in the overall
design of the subsystem, there is better control and
members are exposed to each others design. The
specific advantage from a quality assurance point is
the formalized critique of design walk-throughs which
are a preventive measure for design errors and pro-
gram "bugs." Structured design, design walk-throughs
and the incorporation of "antibugging" facilitate
this level of testing by exposing and addressing
problem areas before they become coded "bugs."

2. Preliminary qualification tests of the CI are
performed to highlight the special functions of the
CI from an integrated point of view. Certain
functional requirements may require the cooperative
execution of one or more modules to achieve an
intermediate or special function of the CI. Specific
test plans will be provided for the validation of
this type of functional requirement including
preparation of appropriate test data. (Selected
functions from 3.2 must be listed).

3. Formal Qualification Test will verify the functional
performance of all the modules, within the CI as an

integrated unit, that accept the specified input,
perform the specified processes and deliver the
specified outputs. Special consideration must be
given to test data to ensure verification that proper
interface of modules has been constructed.

I

4-2

DS 620141320
1 November 1985

SECTION 5

PREPARATION FOR DELIVERY

The implementation site for the constructed software will
be the ICAM Integrated Support System (IISS) Test Bed site
located at General Electric in Schenectady, NY. The required
computer equipment will have been installed. The constructed
software will be transferred to the IISS system via appropriate
storage media.

GPO..748...61

5-1

I

